Anatomy and Histology of the Spiral Valve Intestine in Juvenile Australian Lungfish, Neoceratodus forsteri

نویسندگان

  • Masoud Hassanpour
  • Jean Joss
چکیده

The Australian lungfish, Neoceratodus forsteri, is the only vertebrate that possesses a complete spiral valve intestine with pre-pyloric coiling. This study describes the anatomy and histology of the spiral valve intestine in juvenile N. forsteri and compares it to a previous study of adult N. forsteri, thus providing a broader picture and better understanding of the intestine of the Australian lungfish. Not surprisingly, most features of the spiral valve intestine in juvenile and adult N. forsteri are similar. However, our study goes further to show that, unlike most other vertebrates, the stomach (pre-pyloris) is non-distensible (lacks rugae). Rugae are confined to the post-pyloric duodenum. The epithelium of the pyloric fold, between foregut and midgut, is ciliated and the presence of lymphoid tissue in the pyloric fold implies the involvement of this region in the immune system. Lymphoid tissue is also present around the posterior spleen in the medial axis, which indicates a broader gut-associated lymphoid tissue (GALT) in juvenile Neoceratodus than has been previously recognized in adult Neoceratodus. This study also found some node-like structures in the epithelium of the mucosal tissue, which resemble the Peyer’s patches of other more advanced vertebrates. Furthermore, a previously unreported parasite was found in the spleen encased in fibrous tissue, indicating an immune response had been mounted by the host against it. These latter observations suggest that a thorough investigation of GALT in Neoceratodus is warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain – Endocast Relationship in the Australian Lungfish, Neoceratodus forsteri, Elucidated from Tomographic Data (Sarcopterygii: Dipnoi)

Although the brains of the three extant lungfish genera have been previously described, the spatial relationship between the brain and the neurocranium has never before been fully described nor quantified. Through the application of virtual microtomography (μCT) and 3D rendering software, we describe aspects of the gross anatomy of the brain and labyrinth region in the Australian lungfish, Neoc...

متن کامل

Cartilage, bone and intermandibular connective tissue in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi)

The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue th...

متن کامل

Development of the Axial Skeleton and Median Fin in the Australian Lungfish, Neoceratodus forsteri

New observations on the axial skeleton of the extant lungfish Neoceratodus forsteri (Dipnoi; Sarcopterygii) indicate that neural and haemal arch elements develop more independently than previously believed. For example, while the cartilaginous neural arches/spines begin development anteriorly, just behind the skull, the distal supraneurals first form separately in the posterior region of the ax...

متن کامل

The epithelial sodium channel in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).

Epithelial sodium channel (ENaC) is a Na(+)-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na(+) absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleo...

متن کامل

Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: evidence for conservation of composition for 300 million years.

The Australian lungfish Neoceratodus forsteri is the most primitive member of the lungfish family, with a surfactant lipid composition similar to the actinopterygiian fishes, which evolved 400 million years ago. We have analysed the proteins associated with surfactant isolated from lung lavage of this species, and used electron microscopy and immunohistochemistry to examine the surfactant struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009